Prove that the centres of the three circles
x2+y2−4x−6y—−12=0,x2+y2+2x+4y−10=0
and x2+y2−10x−16y−1=0
are collinear.
The given equation of circle are
x2+y2−4x−6y−12=0 …(i)x2+y2+2x+4y−10=0 …(ii)x2+y2−10x−16y−1=0 …(iii)
Let C1 C2 and C3 are the centres of (i) (ii) and (iii)
∴ C1=(−g,−f)=(2,3)C2=(−g,−f)=(−1,−2)C3=(−g,−f)=(5,8)
C1 C2 and C3 will be collinear if ar (Δ C1 C2 C3)=0
ar (ΔC1 C2 C3)=12∣∣
∣∣x1y11x2y21x3y31∣∣
∣∣
=12∣∣
∣∣231−1−21581∣∣
∣∣
=12∣∣
∣∣231−1−21581∣∣
∣∣
=12∣∣ ∣∣231−3−50350∣∣ ∣∣R2→R2−R1R3→R3−R1
=12(−15+15)=12×0=0
∴ C1 C2 and C3 are collinear.