Let C1(12u,−v) be the centre of circle x2+y2+24ux+2vy=0 and C2(u1,v1) be the centre of the circle x2+y2+2u1x+2v1y=0. According to question distance between C1 and C2 is equal do the sum of radius or both the circles.
√(−12u+u1)2+(−v+v1)2=√(144u2+v2)+√u21+v21
squaring both sides, we get
(−12u+u1)2+(−v+v1)2=(144u2+v2)+(u21+v21)+2√(144u2+v2)√(u21+v21)144u2+u21−24uu1+v2+v21−2vv1=144u2+v2+u21+v21+2√(144u2+v2)√(u21+v21)−12uu1−vv1=√144u2+v2√u21+v21$
squaring both sides, we get
(−12uu1−vv21)=(144u2+v2)√(u21+v21)
144u2u21+v2v21+24uu1vv1=144u2u21+144u2v21+v2u21+v2v21
24uu1vv1=144u2v21+v2u21
(12uv1)2−2∗(12uv1)∗(vu1)+(vu1)2=0
(12uv1−vu1)2=0
12uv1−vu1=0
12uv1=vu1