wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the coefficient of (r+1)th term in the expansion of (1+x)n+1 is equal to the sum of the coefficients of rth and (r+1)th terms in the expansion of (1+x)n.

Open in App
Solution

Now, coefficient of (r+1)th term in the expansion of (4+x)n+1=n+1Cr+11

=n+1Cr and, coefficient of rth term in (1+x)n +coefficient of (r+1)th term in (1+x)n

=nCr1+nCr+11

=nCr1+nCr

=n!{n(r1)} (r1)!+n!(nr)!r!

=n!{nr+1}!(r1)!+n!(nr)!r!

=n!(nr+1)(nr)!(r1)!+n!(nr)!r(r1)!

=n!(nr+1)(nr)!(r1)!+n!(nr)!(r1)!r

=n!(nr)!(r1)![1nr+1+1r]

=n!(nr)!(r1)![r+nr+1(nr+1)r]

=n!(nr)!(r1)![n+1(nr+1)r]

=n!(n+1)(nr)!(nr+1)(r1)!r

=(n+1)!(nr+1)!r!

=(n+1)!(n+1r)!r!

=n+1Cr

n+1Cr=nCr1+nCr

The coefficient of (r+1)th term in the expansion of (1+x)n+1 is equal to the sum of the coefficient of rth and (r+1)th terms in the expansion of (1+x)n.


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon