The given series is an A.G.S with d = 1 and r = 11+x
S=(1+x)n+2(1+x)n−1+3(1+x)n−2
∴ ....(n - 1 + m) terms
S11+x=(1+x)n−1+2(1+x)n−2+.......+(n−m+1)(1+x)m−1
Subtracting S[1−11+x]=(1+x)n+(1+x)n−1+1+x)n−2.....
orx1+xS=(1+x)n⎡⎢
⎢
⎢
⎢
⎢⎣−1(11+x)n−m+11−1/(1+x)⎤⎥
⎥
⎥
⎥
⎥⎦
-(n - m + 1)(1 + x)m−1
∴Sx1+x=(1+x)n(1+x)n−m+1−1x⋅(1+x)n−m−(n−+m+1)(1+x)m−1
or Sx1+x=(1+x)mx(1+x)n−m+1−1−(n−m+1)(1+x)m−1
∴Sx1+x=1x[(1+x)n+1−(1+x)m]−(n−m+1)(1+x)m−1
∴S=1x2[(1+x)n+2−(1+x)m+1]−(n−m+1)(1+x)mx
1x2(1+x)n+2−1x2(1+x)n+2−(n−m+1)(1+x)mx
=T1=T2÷T3There will be no terms of xminT2andT3as the highest degree term in both will be xm−1The term ofxminT1 will be the term of xm+2in(1+x)n+2 which will be n+2Cm+2