wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the coefficient of xm in the expansion of (1+x)m+2(1+x)n1+3(1+x)n2+(nm+1)(1+x)m where 0mnisn+2Cm+2

Open in App
Solution

The given series is an A.G.S with d = 1 and r = 11+x
S=(1+x)n+2(1+x)n1+3(1+x)n2
....(n - 1 + m) terms
S11+x=(1+x)n1+2(1+x)n2+.......+(nm+1)(1+x)m1
Subtracting S[111+x]=(1+x)n+(1+x)n1+1+x)n2.....
orx1+xS=(1+x)n⎢ ⎢ ⎢ ⎢ ⎢1(11+x)nm+111/(1+x)⎥ ⎥ ⎥ ⎥ ⎥
-(n - m + 1)(1 + x)m1
Sx1+x=(1+x)n(1+x)nm+11x(1+x)nm(n+m+1)(1+x)m1
or Sx1+x=(1+x)mx(1+x)nm+11(nm+1)(1+x)m1
Sx1+x=1x[(1+x)n+1(1+x)m](nm+1)(1+x)m1
S=1x2[(1+x)n+2(1+x)m+1](nm+1)(1+x)mx
1x2(1+x)n+21x2(1+x)n+2(nm+1)(1+x)mx
=T1=T2÷T3There will be no terms of xminT2andT3as the highest degree term in both will be xm1The term ofxminT1 will be the term of xm+2in(1+x)n+2 which will be n+2Cm+2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Visualising the Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon