CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the common tangent of the ellipses x2a2+y2b2=2xc and x2b2+y2a2+2xc=0 subtends a right angle t the origin.

Open in App
Solution

x2a2+y2b22xc=0 ---eq.1
x2b2+y2a22xc=0 ---eq.1
Multiply eq.1 ×a2
x2+y2.a2b22a2xc=0
(xa2c)2a4c2+a2b2y2=0
(xa2c)2+a2b2y2=a4c2
(xa2/c2)21+y2b2/a2=a4c2
(xa2/c2)2(a/c)2+y2(ba/c)2=1 ---eq.3
Multiply eq.2 ×b2
x2+y2.b2a22b2xc=0
(xb2c)2b4c2+b2a2y2=0
(xb2c)2+b2a2y2=b4c2
(xb2/c2)21+y2a2/b2=b4c2
(xb2/c2)2(b/c)2+y2(ab/c)2=1 ---eq.4
We know,
x2a2+y2b2=1
Tangent equation in slope form
y=mx±a2m2+b2
$ \therefore C_1 \left( \dfrac{a^2}{c} , o \right) \, \, C_2 \left( \dfrac{b^2}{c} , o \right) $
Therefore,
y=m1(xa2c)±a4c2m21+a2b2c2
y=m1(xa2c)±aca2m21+b2 ---eq.5
Again,
y=m2(xb2c)±b4c2m22+a2b2c2
y=m2(xb2c)±bcb2m21+a2 ---eq.6
eq.5 and eq.6 passing by origin
m1a2c=±aca2m21+b2
m2b2c=±bcb2m22+a2
m1a=±a2m21+b2 ---eq.7
m2b=±b2m22+a2
In eq. 7 , squaring both sides.
m21a2=a2m21+b2b2=0b=0
So, m2=±b2m22+a2b=±0+a20=a0=
and m1=0
So, the tangents are perpendicular.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tangent Circles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon