Given curves are, x=y2⋯(i)
xy=k⋯(ii)
From (i) and (ii),
we get,
⇒y3=k
⇒y=k13
From (i),we get
x=k23
Thus, point of intersection of curve is ⎛⎜⎝k23,k13⎞⎟⎠
Slope of tangent for x=y2
Differentiating w.r.t. x, dxdx=d(y2)dx
⇒1=2y×dydx
⇒dydx=12y
Slope of tangent at ⎛⎜⎝k23,k13⎞⎟⎠ is dydx=12⎛⎜⎝k13⎞⎟⎠=12k13⋯(iii)
Slope of tangent for xy=k
Differentiating w.r.t. x, d(xy)dx=0
⇒y+xdydx=0
⇒dydx=−yx
Slope of tangent at ⎛⎜⎝k23,k13⎞⎟⎠ is dydx=−k13k23=−1k13⋯(iv)
For the curve to cut at right angles, the tangents must be perpendicular at point of intersection.
Product of the slopes of the tangents =−1
12k13×−1k13=−1
⇒12k23=1
⇒2k23=1
⇒k23=12
Taking cube on both sides,
⇒⎛⎜⎝k23⎞⎟⎠3=(12)3
⇒k2=18
⇒8k2=1