Where y1=√4x&y2=x24
=∫40√4xdx−=∫40x24dx
=2∫40√x‘dx−163
=2×⎡⎢
⎢
⎢
⎢⎣x12+112+1⎤⎥
⎥
⎥
⎥⎦40−163
=2×⎡⎢
⎢
⎢
⎢⎣x3232⎤⎥
⎥
⎥
⎥⎦40−163
=43⎡⎢⎣(4)32−(0)32⎤⎥⎦−163
=438−0−163
=323−163=163
So, from step 2,3,4, we proved
Area OPQAO = Area OAQBO = Area OBQRO =163 square units