Prove that the determinant ∣∣ ∣∣xsin θcos θ−sin θ−x1cos θ1x∣∣ ∣∣ is independent of θ.
Let A=∣∣
∣∣xsin θcos θ−sin θ−x1cos θ1x∣∣
∣∣
Expanding to corresponding first row, we get
A=x∣∣∣−x11x∣∣∣−sin θ∣∣∣−sin θ1cos θx∣∣∣+cos θ∣∣∣−sin θ−xcos θ1∣∣∣
=x(−x2−1)−sin θ(−x sin θ−cos θ)+cos θ(−sin θ+x cos θ)=−x3−x+x sin2 θ+sin θcos θ−sin θcos θ+xcos2 θ=−x3−x+x(sin2 θ+cos2 θ)=−x3−x+x (∵sin2 θ+cos2 θ=1)
=−x3. Hence, A is independent of θ.