The given determinant is,
| x sinθ cosθ −sinθ −x 1 cosθ 1 x |
Simplifying the above determinant,
Δ=| x sinθ cosθ −sinθ −x 1 cosθ 1 x | =x( − x 2 −1 )−sinθ( −xsinθ−cosθ )+cosθ( −sinθ+xcosθ ) =− x 3 −x+x sin 2 θ+sinθ⋅cosθ−sinθ⋅cosθ+x cos 2 θ =− x 3 −x+x( sin 2 θ+ cos 2 θ )
Since sin 2 θ+ cos 2 θ=1, thus,
Δ=− x 3 −x+x⋅1 =− x 3
Hence, Δ is independent of θ.
Prove that the determinant ∣∣ ∣∣xsin θcos θ−sin θ−x1cos θ1x∣∣ ∣∣ is independent of θ.