xa+yb=1.......(i)xb+ya=1......(ii)xa+yb=2......(iii)xb+ya=2.......(iv)
Solving (iv) and (i)
⇒A(ab(2a−b)a2−b2,ab(a−2b)a2−b2)
Solving (i) and (ii)
⇒B(aba+b,aba+b)
Solving (ii) and (iii)
⇒C(ab(a−2b)a2−b2,ab(2a−b)a2−b2)
Solving (iii) and (iv)
⇒D(2aba+b,2aba+b)
Slope of AC=m1
m1={ab(2a−b)a2−b2−ab(a−2b)a2−b2}{ab(a−2b)a2−b2−ab(2a−b)a2−b2}m1=ab(2a−b−a+2b)ab(a−2b−2a+b)=−1
Slope of BD
m2={2aba+b−aba+b}{2aba+b−aba+b}m2=1m1m2=(−1)(1)m1m2=−1
Product o slope is −1 so AC and BD are perpendicular.
Hence, the diagonals are at right angle.