Let x=1a+1b+1c+.....
∴x=1a+1b+1c+x=b(c+x)+1(ab+1)(c+x)+a;
On reduction we obtain;-
(1+ab)x2+(abc+a+c−b)x−(1+bc)=0
Similarly, y=1b+1a+1c+y
Hence, (1+ab)y2+(abc+b+c−a)y−(1+ac)=0
Subtracting and rearranging, we have
(1+ab)(x2−y2)+(ab+1)c(x−y)+(a−b)(x+y)+c(a−b)=0
i.e.,
(1+ab)(x−y)(x+y+c)+(a−b)(x+y+c)=0
Now x+y+c is positive quantity,
Hence, (1+ab)(x−y)+(a−b)=0;
∴x−y=b−a1+ab
Hence, the difference is;-
=a−b1+ab;