Let distance travelled in 1 st n seconds =
S1
Let distance travelled in next ' n ' seconds = S2
Let distance in next ' n ' seconds = S3 . . . . . . and so on .
Let distance ' 2n ' seconds = d2n
Let distance travelled in '3n' seconds = d3n . . . . . . . . and so on .
So ,
S2=d2n−S1 ;
s3=d3n−d2n ;
S4=d4n−d3n . . . and so on .
As body starts from rest , u = 0 ,
and accn = g
So, s1=12gn2
s2=12g(2n)2−12gn2
Now, nth term of the sequence 1 , 2 . 3 , 4 ....is given by (2n - 1)
Hence s1:s2:s3:s4:.....:sn
= 12g(n2):12g(3n2):12g(5n2):12g(7n2):....:12g(2n−1)n2
or s1:s2:s3:s4:........:sn
= 1 : 3 : 5 : 7 : ....... : (2n - 1)
hence proved