For the general equation of a conic, we have
1α2+1β2=a+b−2hcosωsin2ω
and 1α2β2=ab−h2sin2ω
hence, α2+β2=a+b−2hcosωab−h2 ....(1)
and α2β2=sin2ωab−h2 ....(2)
Again as e22−e2=α2−β2α2+β2, hence e4(2−e2)2=(α2+β2)2−4α2β2(α2+β2)2
e4(2−e2)2=1−4α2β2(α2+β2)2
4α2β2(α2+β2)2=1−e4(2−e2)2=4−4e2(2−e2)2
(α2+β2)2α2β2=4−4e2+e41−e2
Substituting the values from (1) and (2) and simplifying, we get
(α+β−2hcosω)2(ab−h2)sin2ω=4+e41−e2