Prove that the equation to a circle whose radius is a and which touches the axes of coordinates, which are inclined at an angle ω, is x2+2xycosω+y2−2a(x+y)cotω2+a2cot2ω2=0.
Open in App
Solution
If the circle touches both the axis, the center may be taken as (h,h). If a us the radius a=hsinω or h=acscω ∴Center(acscω,acscω) and radius 'a' Putting these values in the general equation , we get x2+y2+2xycosω−2x(acscω+acscωcosω)−2y(acscω+acscωcosω)+a2csc2ω+
a2csc2ω+2a2csc2ωcosω−a2=0 or x2+y2+2xycosω−2xacscω(1+cosω)−2yacscω(1+cosω)+2a2csc2ω(1+cosω)−a2=0.....1 cscω(1+cosω)=2csc2ω/22sinω/2cosω/2=cotω2 and 2a2csc2ω(1+cosω)−a2 =a2[22csc2ω/24csc2ω/2sin2ω/2−1] =a2[csc2ω2−1] =a2cot2ω2 Putting these values in 1, we get x2+y2+2xycosω−2a(x+y)cotω2+a2cot2ω2=0