Let the point A,B, and C be (h,k),(x1,y1) and (x2,y2) respectively
Let slope of AB be m1 and slope of AC be m2
m1=k−y1h−x1m2=k−y2h−x2tanθ=∣∣∣m1−m11+m1m2∣∣∣tanθ=±k−y1h−x1−k−y2h−x21+k−y1h−x1×k−y2h−x21cotθ=±(k−y1)(h−x2)−(h−x1)(k−y2)(h−x1)(h−x2)+(k−y1)(k−y2)(h−x1)(h−x2)+(k−y1)(k−y2)=±cotθ((k−y1)(h−x2)−(h−x1)(k−y2))(h−x1)(h−x2)+(k−y1)(k−y2)±cotθ((k−y1)(h−x2)−(h−x1)(k−y2))=0
Generalising the equation
(x−x1)(x−x2)+(y−y1)(y−y2)±cotθ{(y−y1)(x−x2)−(x−x1)(y−y2)}=0
Hence proved.