ty=x+at2x−ty+at2=0
Equation of circle is
(x−at2)2+(y−2at)2+λ(x−ty+at2)=0......(i)
It passes through (a,0)
(a−at2)2+(0−2at)2+λ(a−t(0)+at2)=0λ(a+at2)=−(a2+a2t4−2a2t2+4a2t2)λ=−a2+a2t4+2a2t2a+at2=−(a+at2)2a+at2=−a(1+t2)
Substituting λ in (i), we get
(x−at2)2+(y−2at)2−a(1+t2)(x−ty+at2)=0⇒x2+y2−ax(3t2+1)−ay(3t−t3)+3a2t2=0
Let the centre of circle be (h,k)
⇒h=a(3t2+1)2,k=a(3t−t3)2h=a(3t2+1)23t2+1=2hat2=2h−a3a........(ii)k=a(3t−t3)2k=at(3−t2)2k2=a2t2(3−t2)24
Substituting t2 from (ii)
4k2=a2(2h−a3a)(3−2h−a3a)24k2=a2(2h−a3a)4(−h+5a3a)227ak2=(2h−a)(h−5a)2
Generalising the equation
27ay2=(2x−a)(x−5a)2