y2(cosα=√3sinα)cosα−xy(sin2α−√3cos2α)+x2(sinα−√3cosα)sinα=0
So the given equation is a homogenous equation in second degree, it represents 2 straight lines passing through origin
So −(sin2α−√3cos2α)=(√3cos2α−sinα)
=√3cos2α−√3sin2α−2sinαcosα
=(√3cosα+sinα)(cosα−√3sinα)
The given equation can be factorized as
(ycosα−xsinα)(y(cosα+√3sinα)−x(sinα−√3cosα))=0
Hence the given equation represents
ycosα−xsinα=0....(1)
and y(cosα+√3sinα)−x(sinα−√3cosα)=0
If θ be the angle between them, then
tanθ=±sinα−√3cosαcosα+√3sinα−sinαcosα1+sinα−√3cosαcosα+√3sinαsinαcosα
=±√3 (on simplification)
∴θ=60°
The third given straight line is
(cosα−√3sinα)y−(sinα+√3cosα)x+a=0.....(3)
The point of interaction of (1) & (2)
Say (A), is clearly =(0,0)
The point of interaction of (1) & (3)
Say B will be
=(acosα√3,asinα√3)
If Φ be the angle between (1) & (3) then
tanΦ=±⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩sinαcosα−sinα+√3cosαcosα−√3sinα1+sinαcosαsinα+√3cosαcosα−√3sinα⎫⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪⎭=±√3
∴Φ=60°
So 2 angles of △ABC are 60° each ; hence 3rd will also be 60°
∴ The triangle is equilateral triangle
Area of an equilateral triangle
=x2√39
Side AB
x=
⎷⎧⎨⎩(acosα√3)2+(asinα√3)2⎫⎬⎭
=a√3
The area of the given triangle is
=(a√3)2√34=a24√3