y3−x3+3xy(y−x)=0
Factorising the given equation
(y−x)(y2+x2+xy)+3xy(y−x)=0(y−x)(y2+x2+xy+3xy)=0(y−x)(y2+4xy+x2)=0
y−x=0....(i)y2+4xy+x2=0y=−4x±√16x2−4x22y=−2x±√3xy=−2x+√3x....(ii)y=−2x−√3x.....(iii)
Angle between (i) and (ii)
tanθ=1−2+√31−2+√3=1⇒θ=45o
Angle between (ii) and (iii)
tanθ=1−2−√31−2−√3=1⇒θ=45o
Angle between (ii) and (iii)
tanθ=−2+√3−(−2−√3)1+(−2+√3)(−2−√3)=2√30=∞⇒θ=90o
Hence, they are equally inclined to each other.