The lines makes an angle α with the line y+x=0
Slope of given line that is m1=−1
Let the slope of the other line be m2
The angle between straight lines thatt is tanθ=∣∣∣m1−m21+m1m2∣∣∣
tanα=∣∣∣−1−m21−1.m2∣∣∣=∣∣∣m2+1m2−1∣∣∣m2+1m2−1=tanα,m2+1m2−1=−tanα⇒m2=tanα+1tanα−1,tanα−1tanα+1
Equation of straght line with given slope and a point is y=mx+c
Lines passes through origin 0=0.m+c
⇒c=0
So the equation of lines are y=tanα+1tanα−1x and y=tanα−1tanα+1x
y=sinα+cosαsinα−cosαx,y=sinα−cosαsinα+cosαx
Combined equation of straight lines
(y−sinα+cosαsinα−cosαx)(y−sinα−cosαsinα+cosαx)=0y2−xy(sinα−cosαsinα+cosα)−xy(sinα+cosαsinα−cosα)+(sinα+cosαsinα−cosα)(sinα−cosαsinα+cosα)x2=0y2−xy((sinα−cosα)2+(sinα+cosα)2(sinα+cosα)(sinα−cosα))+x2=0y2−xy(2sin2α−cos2α)+x2=0y2−xy(2−cos2α)+x2=0y2+2xysec2α+x2=0
Hence proved