Prove that the following function does not have maxima or minima.
h(x)=x3+x2+x+1
Given function is, h(x)=x3+x2+x+1
⇒h′(x)=3x2+2x+1
Now, put h′(x)=0⇒3x2+2x+1=0
⇒x=−2±√4−4×3×16=−2±√−86[Using x=−b±√b2−4ac2a]⇒x=−2±2√2i6=2(−1±√2i)6=−1±√2i3/ϵR
Therefore, there does not exist any xϵR such that h' (x)=0
Hence, function h does not have maxima or minima