Prove that the following sets of three lines are concurrent:
(i) 15 x−18 y+1=0, 12 x+10 y−3=0 and 6 x+66 y−11=0
(ii) 3 x−5 y−11=0, 5 x+3 y−7=0 and x+2 y=0
(iii) xa+yb=1, xb+ya=1 and y=x.
(i) Given
15x−18y+1=0 ...(i)
12x+10y−3=0 ...(ii)
6x+66y−11=0 ...(iii)
Now, consider the following determinant:
∣∣ ∣∣15−1811210−3666−11∣∣ ∣∣
=15(−110+198)+18(−132+18)+1(792−60)
⇒ ∣∣ ∣∣15−1811210−3666−11∣∣ ∣∣=1320−2052+732=0
Hence, the given lines are concurrent.
(ii) 3x−5y−11=0 ...(i)
5x+3y−7=0 ...(ii)
x+2y=0 ...(iii)
Now, consider the following determinant:
∣∣ ∣∣3−5−1153−7120∣∣ ∣∣
=3×14+5×7−11×7=0
Hence, the given lines are concurrent.
(iii) Given:
bx+ay−ab=0 ...(i)
ax+by−ab=0 ...(ii)
x−y=0 ...(iii)
Now, consider the following determinant:
∣∣ ∣∣ba−abab−ab1−10∣∣ ∣∣
=−b×ab−a×ab−ab×(−a−b)=0
Hence, the given lines are concurrent.