3x+4y+6=0......(i)⇒x=−6−4y36x+5y+9=0.......(ii)6(−6−4y3)+5y+9=0−12−8y+5y+9=0−3y−3=0−3y=3⇒y=−1x=−6−4(−1)3⇒x=−23
So the point of intersection of (i) and (ii) is (−23,−1)
3x+3y+5=0......(iii)
Substituting the point of intersection in (iii)
3(−23)+3(−1)+5=−2−3+5=0
(iii) also satisfies the point of intersection of (i) and (ii) , so the given set of lines meet in a point .