Prove that the function f defined by f(x)={x|x|+2x2if x≠0k,if x=0
remains discontinuous at x=0, regardless the choice of k.
We have, f(x)={x|x|+2x2if x≠0k,if x=0
At x=0,,
LHL=limx→0−x|x|+2x2=limh→0(0−H)|0−H|+2(0−H)2=limh→0−hh+2h2=limh→0−hh(1+2h)=−1
RHL= limx→0+x|x|+2x2=limh→00+h|0+h|+2(0+h)2=limh→0hh+2h2=limh→0hh(1+2h)=1
and f(0)=k
Since, LHL ≠ RHL for any value of k,
Hence, f(x) is discontinuous at x=0 regardless the choice of k.