Given: f(x)=log|cosx|
we need to know the sign of the modulus, so
When x ϵ (0,π2) or x∈(3π2,2π)
cosx>0⇒|cosx|=cosx
⇒f(x)=logcosx
Differentiating w.r.t x,
⇒f′(x)=1cosx×(−sinx)=−tanx
When x ϵ (0,π2)
⇒tanx>0
⇒f′(x)<0
Thus, f(x) is decreasing in (0,π2)
When x ϵ (3π2,2π)
⇒tanx<0
⇒f′(x)>0
Thus, f(x) is increasing in (3π2,2π)
Hence proved.