The given function is f( x )= x 2 −x+1.
Differentiate the function with respect to x.
f ′ ( x )= d dx ( x 2 −x+1 ) =2x−1
Substitute f ′ ( x ) = 0,
2x−1=0 2x=1 x= 1 2
Now, the point x= 1 2 divides the domain ( −1,1 ) into two disjoint intervals given by,
( −1, 1 2 ) ( 1 2 ,1 )
In the interval ( −1, 1 2 ).
f ′ ( x )<0 2x−1<0
The function is strictly decreasing in the domain ( −1, 1 2 ).
In the interval ( 1 2 ,1 ).
f ′ ( x )>0 2x−1>0
The function is strictly increasing in the domain ( 1 2 ,1 ).
Thus, the function f( x )= x 2 −x+1 is neither strictly increasing nor strictly decreasing in the interval ( −1,1 ).