ax2+2hxy+by2+2gx+2fy+c=0ax2+2(hy+g)x+(by2+2fy+c)=0
Using quadratic formula
x=−2(hy+g)±√4(hy+g)2−4a(by2+2fy+c)2aax+hy+g=±√(hy+g)2−a(by2+2fy+c)
ax+hy+g=±√(h2−ab)y2+2(gh−af)y+(g2−ac) .... (i)
For parallel straight lines R.H.S of (i) must be independent of y
⇒h2−ab=0h2=ab
Also gh−af=0
gh=afg2h2=a2f2g2ab=a2f2⇒bg2=af2
Hence proved.
So the straight lines are given by ax+hy+g=±√(g2−ac)
ax+hy+g−√(g2−ac)=0
ax+hy+g+√(g2−ac)=0
Distance between lines
=∣∣ ∣∣g−√(g2−ac)−(g+√(g2−ac))√a2+h2∣∣ ∣∣=2√g2−ac√a2+h2=2√g2−ac√a2+ab=2√g2−ac√a(a+b)