Prove that the general solution of sinx−3sin2x+sin3x=cosx−3cos2x+cos3x is nπ/2+π/8.
Open in App
Solution
The given equation can be written as sin3x+sinx−3sin2x =cos3x+cosx−3cos2x 2sin2xcosx−3sin2x =2cos2xcosx−3cos22x sin2x(2cosx−3)=cos2x(2cosx−3)=0 ∴sin2x=cos2x as 2cosx−3≠0 ∵cosx≠3/2 ∴tan2x=1=tan(π/4) ∴2x=nπ+π4 or x=nπ2+π8.