wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the identities:
cos5θ=16cos6θ20cos3θ+5cosθ

Open in App
Solution

cos5θ=cos(2θ+3θ)
=cos2θcos3θsin2θsin3θ
=(2cos2θ1)(4cos3θ3cosθ)(2sinθcosθ)(3sinθ4sin3θ)
=8cos5θ6cos3θ4cos3θ+3cosθ6sin2θcosθ+8sin4θcosθ
=8cos5θ10cos3θ+3cosθ6sin2θcosθ+8sin4θcosθ
=8cos5θ10cos3θ+3cosθ6cosθ(1cos2θ)+8(1cos2θ)2cosθ
=8cos5θ10cos3θ+3cosθ6cosθ+6cos3θ+8cosθ(12cos2θ+cos4θ)
=8cos5θ4cos3θ3cosθ+8cosθ16cos3θ+8cos5θ
=16cos5θ20cos3θ+5cosθ
cos5θ=16cos5θ20cos3θ+5cosθ
Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon