Prove that the length of the common chord of the circles x2+y2+ax+by+c=0 and x2+y2+bx+ay+c=0 is √12(a+b)2−4c.
Open in App
Solution
Here also common chord is x- y = 0 C(−a2,−b2)andr=12√a2+b2−4c p=(−a/2)−(−b/2)√2=b−a2√(2) Length AB=2√r2−p2=√4r2−4p2 ∴AB=
⎷(a2+b2−4c)−(b−a√2)2 √(a+b)2−8c2