As the radius of the given circles are equal so the common chord will bisect the line joining their centres
OO′=√(a−b)2+(b−a)2OO′=√(a−b)2+(a−b)2OO′=√2|a−b|
Now OO′=2AB
⇒OB=√2|a−b|2=|a−b|√2
In △AOB , OA2=OB2+AB2
⇒c2=(|a−b|√2)2+AB2⇒AB2=c2−(a−b)22⇒AB2=2c2−(a−b)22⇒AB=√2c2−(a−b)22=√4c2−2(a−b)22
Length of common chord =AC=2AB
⇒AC=2×√4c2−2(a−b)22=√4c2−2(a−b)2
Hence proved.