Focus of the parabola is Q(a,0)
Equation of normal at P(at2,2at) is
y=−tx+2at+at3y+tx−2at−at3=0....(i)
Radius of circle = Half the focal distance of P
⇒r=a+at22
Centre of circle is mid point of focus and P
⇒ centre O(at2+a2,at)
Draw perpendicular OM from centre of circle to normal at P
Perpendicular distance of O from (i) is
OM=∣∣∣at+t(at2+a2)−2at−at3∣∣∣√t2+1OM=∣∣∣−at2−at32∣∣∣√t2+1=at2t2+1√t2+1OM=at√t2+12
In △OPM , OP2=OM2+PM2
PM2=OP2−OM2PM2=r2−OM2PM2=(a+at22)2−(at√t2+12)2PM2=a24(1+t4+2t2−t4−t2)PM2=a24(1+t2)PM=a√1+t22
Length of intercept =2PM
L=2a√1+t22=a√1+t2
Hence proved.