Prove that the line y=mx+c will be a tangent to the circle (x−a)2+(y−b)2=r2 if m2(a2−r2)+2ma(c−b)+(c−b)2=r2.
Open in App
Solution
Perpendicular from the centre (a,b) to the tangent mx−y+c=0 should be equal to radius r ma−b+c√(m2+1)=r. Square m2a2+(c−b)2+2ma(c−b)=r2(m2+1) or m2(a2−r2)+2ma(c−b)+(c−b)2=r2.