Prove that the lines ax+by+c=0,bx+cy+a=0 and cx+ay+b=0 are concurrent a3+b3+c3=3abc or if a+b+c=0.
Open in App
Solution
The line will be concurrent if ∣∣
∣∣abcbcacab∣∣
∣∣=0 Or a(bc−a2)−b(b2−ac)+c(ab−c2)=0 Or a3+b3+c3−3abc=0 Or (a+b+c)(a2+b2+c2−ab−bc−ca)=0 Or a+b+c=0 as the other factor is always +ive =12∑(a−b)2