x−12=y−23=z−34.....(1) and x−23=y=34=z−45.....(2)
Hence x1=1,y1=2,z1=3
x2=2,y2=3,z2=4
and l1=2,m1=3,n1=4
l2=3,m2=4,n2=5
if lines are coplanar
∣∣
∣∣x2−x1y2−y1z2−z1l1m1n1l2m2n2∣∣
∣∣=0
now
∣∣
∣∣x2−x1y2−y1z2−z1l1m1n1l2m2n2∣∣
∣∣=0
=∣∣
∣∣2−13−24−3234345∣∣
∣∣
=∣∣
∣∣111234345∣∣
∣∣
=∣∣
∣∣1112343−24−35−4∣∣
∣∣ by R3→R3−R2
=∣∣
∣∣111234111∣∣
∣∣
=0(∵R1=R3)
∴ Given lines are coplanar again
x−12=y−23=z−34=λ
⇒x=2λ+1,y=3λ+2,z=4λ+3
On line (i) point are (2λ+1,3λ+2,4λ+3). If line (1) and (2) are intersect the other point will be on line (2).
∴2λ+1−23=3λ+2−34
⇒2λ−13=3λ−14
⇒8λ−4=9λ−3
⇒−4+3=λ
⇒λ=−1
∴(2×−1+1,3×−1+2,4×−1+3)
=(−1,−1,−1).