wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the lines joining the middle points of the opposite sides of a quadrilateral and the line joining of the middle points of its diagonals meet in a point and bisect one another.

Open in App
Solution


Let ABCD be the quadrilateral such that the diagonal AC is along the x-axis. Suppose the coordinate of A, B, C and D are
(0,0) , (x2,y2),(x1,0) and (x3,y3) respectively.
E and F are the mid-points of its opposite sides AD and BC respectively and G and H are the midpoints of its diagonals AC and BD. Let EF and GH intersect at I.
Co ordinates of E = left parenthesis fraction numerator 0 plus space x subscript 3 over denominator 2 end fraction comma fraction numerator space 0 plus space y subscript 3 over denominator 2 end fraction right parenthesis equals left parenthesis x subscript 3 over 2 comma y subscript 3 over 2 right parenthesis
Co ordinates of F = left parenthesis fraction numerator x subscript 1 plus x subscript 2 over denominator 2 end fraction comma fraction numerator 0 plus space y subscript 2 over denominator 2 end fraction right parenthesis space equals left parenthesis fraction numerator x subscript 1 plus x subscript 2 over denominator 2 end fraction comma y subscript 2 over 2 right parenthesis
Co ordinate of mid point of EF
= left parenthesis fraction numerator begin display style fraction numerator x subscript 1 plus space x subscript 2 over denominator 2 end fraction end style begin display style plus end style begin display style x subscript 3 over 2 end style space over denominator 2 end fraction comma fraction numerator begin display style space end style begin display style y subscript 2 over 2 end style plus begin display style y subscript 3 over 2 end style space over denominator 2 end fraction right parenthesis equals left parenthesis space fraction numerator space x subscript 1 plus x subscript 2 plus x subscript 3 over denominator 4 end fraction space comma fraction numerator y space subscript 2 plus space y subscript 3 over denominator 4 end fraction right parenthesis ......(1)
G and H that is mid point of diagonal AC and BD respectively, then
Co ordinates of G = left parenthesis fraction numerator 0 plus space x subscript 1 space over denominator 2 end fraction comma space fraction numerator 0 plus 0 over denominator 2 end fraction right parenthesis equals left parenthesis x subscript 1 over 2 comma 0 right parenthesis
Co ordinates of H = left parenthesis fraction numerator x subscript 2 plus x subscript 3 over denominator 2 end fraction comma fraction numerator y subscript 2 plus y subscript 3 over denominator 2 end fraction right parenthesis
Coordinate of mid point of GH
left parenthesis fraction numerator begin display style fraction numerator x subscript 3 plus space x subscript 2 over denominator 2 end fraction end style begin display style plus end style begin display style x subscript 1 over 2 end style space over denominator 2 end fraction comma fraction numerator begin display style space fraction numerator y subscript 2 plus y subscript 3 over denominator 2 end fraction end style over denominator 2 end fraction right parenthesis equals left parenthesis space fraction numerator space x subscript 1 plus x subscript 2 plus x subscript 3 over denominator 4 end fraction space comma fraction numerator y space subscript 2 plus space y subscript 3 over denominator 4 end fraction right parenthesis.......(2)
From (1) and (2), we observe that the co ordinates of the mid points of EF and HG are same.So, EF and HG meets and bisects each other. Therefore, the line joining the middle points of the opposite sides of a quadrilateral and the line joining of middle points of diagonal meets and bisect each other.


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Section Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon