Prove that the lines y=√3 x+1, y=4 and y=−√3 x+2 form an equilateral triangle.
Let the line be
y=√3 x+1 ...(1)
y=4 ...(2)
y=−√3 x+2 ...(3)
Solve (1) and (2)
4=√3 x+1
x=4−1√3=3√3=√3
∴ Point A is (√3, 4)
Solve (2) and (3)
4=−√3 x+2
√3 x=−2
x=−2√3
=−2√33
∴ Point B is (−2√33,4)
Solve (1) and (3)
√3 x+1=−√3 x+2
2 √3 x=1
x=12√3=√36
y=√3(√36)+1
=32
∴ Point C is (√36,32)
length l=√(x2−x1)2+(y2−y1)2
let l1=length of AB
=√(−2√33−√3)2+(4−4)2
=√(5√33)2
=5√33 units
let length l2=length of BC
=√(√36+2√33)2+(32−4)2
=√(5√36)2+(−52)2
=√7536+254
=√7536+25536
=√30036
=106√3
=53√3.
let length l3=length of AC
=√(√36−√3)2+(32−4)2
=√(5√36)2+(−52)2
=√7536+254
=√7536+22536
=√30036
=106√3
=53√3
⇒ l1=l2=l3
Hence, triangle is equilateral.