Let the equation to the ellipse be x2a2+y2b2=1 and any chord be lx+my=1. If the chord passes through the focus of the ellipse, i.e., (ae,0),
We have ael=1
Now, let (h.k) be the co ordinates of the points of intersection of normals; then by Art 412, we get
h=l(a2−b2)1−b2m2a2l2+b2m2=la2e2(1−b2m2)1e2+b2m2
where, hae=e2−e2b2m21+e2b2m2∵ael=1
Similarly
kma2m2=1−e21+e2b2m2
or k=a2(1−e2)e2m1+e2b2m2=b2e2m21+e2b2m2
So, h+aeae=1+e21+e2b2m2
and h−ae2ae=−e2b2m2(1+e2)1+e2b2m2
(h+ae)(h−ae3)a1e2=−(1+e2)2(+e2b2m2)(1+e2b2m2)2
(h+ae)(h−ae3)a2e2=−(1+e2)2a2k2a2b2e2
a2k2(1+e2)2+b2(h+ae)(h−ae3)=0
Locus of (h,k) is;-
a2y2(1+e2)2+b2(x+ae)(x−ae3)=0
Similarly, locus of the chord can be obtained for (−ae,0)