wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

prove that the locus of the point of intersection of the lines x√3-y- 4k√3=0 and √3kx+ky-4√3=0 for different values of k is a hyperbola whose e is 2.

Open in App
Solution

Dear student
The equations 3x-y-43k=0 and 3kx+ky-43=0 can be rewritten as3x-y=43k and 3kx+ky=43 respectively.Multipying the equations:3kx2-ky2=48k3kx248k-ky248k=1x216-y248=1This is the standard equation of a hyperbola , where a2=16 and b2=48Eccentricity, e=a2+b2a2e=16+4816e=84e=2
Regards

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
A Pair of Straight Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon