Let P be the point of intersection of the tangents to the parabola.
Hence the equation of the pair of tangents PQ and PR is [(yy1−2a(x+x1))]2=(y2−4ax)(y21−4ax1)
These lines meet the directrix x+1=0 or x=−a
Substituting this we get
[(yy1−2a(−a+x1))]2=(y2+4a2)(y21−4ax1)
On expanding we get
(yy1)2+[2a(x1−a)2]−4ayy1(x1−a)=(yy1)2−4ax1y2+4a2y21−16a3x1
⇒y2(y21−y21+4ax1)−y[4a(x1−a)y1]+[4a2(x1−a)2−4a2(y21−4ax1)]y=0
⇒x1y2−y1(x1−a)y+a[(x1−a)2−(y21−4ax1)]=0
⇒x1y2−y1(x1−a)y+a[(x1+a)2−y21]=0
Here y1,y2 are ordinates of the point of intersection of tangents with directrix x+a=0
Sum of the ordinates is y1+y2=−ba=y1(x1−a)x1
Product of the ordinates is y1y2=ca=a[(x1+a)2−y21]x1
∴d2=(y1−y2)2=(y1+y2)2−4y1y2
Now substituting the values we get
d2=(x1−a)2y21−4ax1[(x1+a)2−y21]x21
⇒x21d2=(x1−a)2y21−4ax1[(x1+a)2−y21]
⇒x21d2=y21[(x1−a)2+4ax1]−4ax1(x1+a)2
⇒x21d2=y21(x1+a)2−4ax1(x1+a)2
∴x21d2=(y21−4ax1)(x1+a)2
Hence the locus of (x1,y1) is x2d2=(y2−4ax)(x+a)2