For y2=4ax let the pole be T(x1,y1) and the point of contact of tangents be P(at21,2at1) and Q(at22,2at2)
Equation of chord of contact with respect to T is
yy1=2a(x+x1)2ax−yy1+2ax1......(i)
Equation of chord joining PQ is
(t1+t2)y=2x+2at1t22x−(t1+t2)y+2at1t2=0.....(ii)
Now (i) and (ii) are the equation of same line
22a=−(t1+t2)−y1=2at1t22ax1⇒t1+t2=y1a,t1t2=x1a.....(iii)
Given k−2at1h−at21×k−2at2h−at22=−1
k2−2ak(t1+t2)+4a2t1t2=−(h2−ah(t21+t22)+a2t21t22)k2−2ak(t1+t2)+4a2t1t2=−{h2−ah((t1+t2)2−2t1t2)+a2t21t22}
Substituting (iii)
k2−2ak(y1a)+4a2(x1a)=−{h2−ah((y1a)2−2(x1a))+a2(x1a)2}k2−2ak(y1a)+4a2(x1a)=−{h2−ah(y21−2ax1a2)+a2(x1a)2}ak2−2aky1+4a2x1=−(ah2−hy21+2hax1+ax21)ax21−hy21+(4a2+2ah)x1−2aky1+a(k2+h2)=0
Generalising the equation
ax2−hy2+(4a2+2ah)x−2aky+a(k2+h2)=0
Hence proved