p(0) , p(1) , clearly holds goods
p(2)=1+12+13+14=2512>2412=21+22
Thus p(2) holds goods ,
p(n + 1) = (1+12+13+14......+12n)+12n+1
=p(n) + (11+2n+12+2n+12n+2n)
The 2 nd bracket contain 1 , 2 , 3 , .........2n . i.e. 2 terms Each term of this bracket
>12n+2n+12⋅2n 12n=1
∴p(n+1)≥(1+n2)+2n⋅12n+1
=1+n2+12=1+n+12
∴p(n+1)≥1+n+12
Thus p(n ) is universally true