Let the sum of the series be Sn and nth term of the series be Tn
Then Sn=1+2+5+12+25+46+.....+Tn−1+Tn⋯(1)
∴Sn=1+2+5+12+25+.......+Tn−1+Tn⋯(2)
Subtracting (2) from (1), we get
0=1+1+3+7+13+21+.......+(Tn−Tn−1−Tn)
∴Tn=1+3+7+13+21+.....+tn−1+tn⋯(3)
(Here nth term of Tn is tn
∴Tn=1+1+3+7+13+......+tn−1+tn⋯(4)
Subtracting (4) from (3), we get
0=1+0+2+4+6+8+.....+(tn−tn−1)−tn
∴tn=1+2+4+6+8+......+(n−1) terms
=1+(2+4+6+8+(n−2)terms)
=1+(n−2)2{2.2+(n−2−1)2}
=1+(n−2)(2+n−3)
∴tn=n2−3n+3
then Tn=∑tn=∑n2−3∑n+3∑1
=n(n+1)(2n+1)6−3n(n+1)2+3n1
=n6{2n2+3n+1−9n−9+18}
∴Tn=n6(2n2−6n+10)
=n3(n2−3n+5)