Prove that the point A(1, 3, 0), B(-5, 5, 2), C(-9, -1, 2) and D(-3, -3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Here, AB=√(5+1)2+(5−3)2+(2−0)2
=√36+4+4
=√44
=2√11
BC=√(−9+5)2+(−1−5)2+(2−2)2
=√16+36
=√52
=2√13
CD=√(−3+9)2+(−3+1)2+(0−2)2
=√36+4+4
=2√11
DA=√(1+3)2+(3+3)2+0
=√16+36
=√52
=2√13
AC=√(−9−1)2+(−1−3)2+(2−0)2
=√150+16+4
=√120
=4√5
BD=√(−3+5)2+(−3−5)2+(0−2)2
=√4+64+4
=√72
=6√2
Since,
AB = CD and BC = DA
⇒ ABCD is a parallelogram
but, AC ≠ BD
⇒ ABCD is not a rectangle.