Prove that the points (0, 5), B(-2, -2), C(5, 1) and D(7, 7) are the vertices of a rhombus.
Let the given points be A(0, 5), B(-2, -2), C(5, 0) and D(7, 7).
Then ABCD is a quadrilateral in which:
AB = √(−2−0)2+(−2−5)2=√(−2)2+(−7)2=√4+49=√53units
BC = √(5+2)2+(0+2)2=√72+22=√49+4=√53units
CD = √(7−5)2+(7−0)2=√22+72=√4+49=√53units
DA = √(7−0)2+(7−5)2=√72+22=√49+4=√53units
Thus, AB = BC = CD = DA = √53units
Also, AC = √(5−0)2+(0−5)2=√52+(−5)2=√50=5√2units
And, BD = √(7+2)2+(7+2)2=√92+92=√81+81
=√162=9√2units
∴AC≠BD.
Thus, ABCD is a quadrilateral all of whose sides are equal but its diagonals are not equal.
Hence, ABCD is a rhombus.