Vertices of the triangle are A(−3,0), B(1,−3), C(4,1).
Distance between two points = √(x2−x1)2+(y2−y1)2
AB=√(1+3)2+(−3−0)2=5
BC=√(4−1)2+(1+3)2=5
AC=√(4+3)2+(1−0)2=5√2
AB=BC
Therefore, ΔABC
is an isosceles triangle.
(AB)2+(BC)2=52+52=50
and (AC)2=(5√2)2=50
∴(AB)2+(BC)2=(AC)2
So, the triangle satisfies the Pythagoras theorem and hence it is a right angled triangle.