Let A(-3,0), B(1,-3) and C(4,1) by the given points. Then,
AB=√{1−(−3)}2+(−3−0)2=√42+(−3)2=√16+9=5units
BC=√(4−1)2+(1+3)2=√19+16=5units
and, CA=√(4+3)2+(1−0)2=√49+1=5√2unit
Clearly, AB=BC. Therefore, △ABC is isosceles.
Also, AB2+BC2=25+25=(5√2)2=CA2
⇒ △ ABC is right-angled at B.
Thus, △ ABC is right-angled isosceles triangle.
Now, Area of △ ABC =12(Base×Height)=12(AB×BC)
⇒ Area of △ ABC=(12×5×5)sq. Units=252sq. Units