Let the points are A(−7,−3),B(5,10),C(15,8),D(3,−5),
AB=√(5−(−7))2+(10−(−3))2=√(12)2+(13)2=√144+169=√313
BC=√(15−5)2+(8−10)2=√(10)2+22=√100+4=√104
CD=√(3−15)2+(−5−8)2=√(12)2+(13)2=√144+169=√313
DA=√(−7−3)2+(−3−(−5))2=√(10)2+22=√100+4=√104
Now, we will check the relation between diagonals,
AC=√(15−(−7))2+(8−(−3))2=√(22)2+(11)2=√484+121=√605
BD=√(3−5)2+(−5−10)2=√22+(15)2=√4+225=√229
Since , AB=CD,BC=DA,AC≠BD. Adjacent sides are not equal as well hence it is a parallelogram.