wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the points (7,10), (-2,5) and (3,-4) are the vertices of an isosceles right triangle.

Open in App
Solution

Let the given points be A (7,10) B(-2,5) and C(3,-4).

Using distance formula, we have

AB=(7+2)2+(105)2=81+25=106BC=(23)2+(5+4)2=25+81=106CA=(73)2+(10+4)2=16+196=212
Since AB = BC, therefore, ΔABC is an isosceles triangle.
Also, AB2+BC2=106+106=212=AC2
So, ΔABC is a right triangle right angled at B.
So, ΔABC is an isosceles triangle as well as well as a right triangle.
Thus, the points (7, 10), (-2, 5) and (3, -4) are the vertices of an isosceles right triangle.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Distance Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon