We have,
A(x1,y1)=(2,3)
B(x2,y2)=(−2,2)
C(x3,y3)=(−1,−2)
D(x4,y4)=(3,−1)
Now,
Using distance formula we get,
AB=√(x1−x2)2+(y1−y2)2
⇒AB=√(2+2)2+(3−2)2
⇒AB=√17
BC=√(x2−x3)2+(y2−y3)2
⇒BC=√(−2+1)2+(2+2)2
⇒BC=√17
CD=√(x3−x4)2+(y3−y4)2
⇒CD=√(−1−3)2+(−2+1)2
⇒CD=√17
DA=√(x4−x1)2+(y4−y1)2
⇒DA=√(3−2)2+(−1−3)2
⇒DA=√17
Now diagonal AC=√(x1−x3)2+(y1−y3)2
⇒AC=√(2+1)2+(3+2)2
⇒AC=√34
And diagonal BD=√(x2−x4)2+(y2−y3)4
⇒BD=√(−2−3)2+(2+1)2
⇒BD=√34
So,
Sides AB=BC=CD=DA and diagonals AC=BD
Hence, the vertices are of a square ABCD.
Hence proved.