Prove that the points (a, b) , (a1,b1) and (a−a1,b−b1) are collinear if ab1=a1b.
If 3 points are collinear, then the area of the triangle formed by them is zero.
Area of triangle = 12|(x1y2−y1x2)+(x2y3−y2x3)+(x3y1−y3x1)|=0
⇒(x1y2−y1x2)+(x2y3−y2x3)+(x3y1−y3x1)=0
⇒(ab1−ba1)+a1(b−b1)−b1(a−a1)+(a−a1)b−(b−b1)a=0
⇒ab1−ba1+a1b−a1b1−b1a+b1a1+ab−a1b−ba+b1a=0
⇒ab1=a1b